

ΕN

DECLARATION OF PERFORMANCE

No. PEC-TA_2451-CPR-EAD-2017.0004

1. Unique identification code of the product-type:

Hilti anchor channels (PEC-TA) with channel bolts (HBC)

2. Intended use/es:

Product	Intended use
Anchor Channel	For fixing and/or supporting to concrete, structural elements (which contributes to the stability of the works) or heavy units.

3. Manufacturer:

Hilti Werke

4. System/s of AVCP: System 1

5. European Assessment Document: EAD 330008-03-0601

European Technical Assessment: ETA-16/0929 (21.12.2020)

Technical Assessment Body: DIBt - Deutsches Institut für Bautechnik

Notified body/ies: NB 2451 - DVS Zert GmbH

6. Declared performance/s:

Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance under tension load (static and quasi-static load)	
 Resistance to steel failure of anchors, connection and channel lips 	See Annex C1
- Resistance to steel failure of channel bolt	See Annex C9
 Resistance to steel failure by exceeding the bending strength of the channel 	See Annex B5 and C2
- Maximum installation torque	See Annex B5
Resistance to pull out failure of the anchor and to concrete cone failre	See Annex C3 and C4
 Minimum edge distance, spacing and member thickness 	See Annex B3
 Characteristic edge distance and spacing to avoid splitting of concrete under load 	See Annex C3 and C4
- Resistance to blow-out failure – bearing area of anchor head	See Annex A4

Characteristic resistance under shear load (static and quasi-static load)	
- Resistance to steel failure of channel bolt	See Annex C9 and C10
 Resistance to steel failure of channel lips, connection an danchor (shear load perpendicular to longitudinal axis of the channel) 	See Annex C5 and C6
 Resistance to steel failure of channel lips, connection an danchor (shear load in direction of longitudinal axis of the channel) 	See Annex C5 and C6
- Resistance to concrete failure	See Annex C7
Characteristic resistance of anchor channel under combined tension and shear (static and quasi-static load)	See Annex C8
Characteristic fatigue resistance under cyclic fatigue tension load	See Annex C12 and C13
Displacements (static and quasi-static load)	See Annex C5 and C7 to C8
Durability	See Annex B1

Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	See Annex C11

The performance of the product identified above is in conformity with the set of declared performance/s. This declaration of performance is issued, in accordance with Regulation (EU) No 305/2011, under the sole responsibility of the manufacturer identified above.

Signed for and on behalf of the manufacturer by:

Heinz Nieder

General manager PEC Europe GmbH **Gunnar Wald**

Head of Quality Business Unit Anchor

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-16/0929 of 21 December 2020

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

Anchor channels (PEC-TA) with channel bolts (HBC)

Anchor channels

PEC Europe GmbH Obere Kaiserswerther Straße 56 47249 Duisburg DEUTSCHLAND

Hilti Werke

31 pages including 3 annexes which form an integral part of this assessment

EAD 330008-03-0601

ETA-16/0929 issued on 19 May 2020

European Technical Assessment ETA-16/0929

Page 2 of 31 | 21 December 2020

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-16/0929

Page 3 of 31 | 21 December 2020

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The anchor channels (PEC-TA) with channel bolts (HBC) are a system consisting of C-shaped channel profile of carbon steel or stainless steel and at least two metal anchors non-detachably fixed to the channel back and channel bolts.

The anchor channel is embedded surface-flush in the concrete. Channel bolts (HBC) with appropriate hexagon nuts and washers are fixed to the channel.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor channel is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor channel of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance under tension load (static and quasi-static load)	
 Resistance to steel failure of anchors, connection and channel lips 	See Annex C1
- Resistance to steel failure of channel bolt	See Annex C9
 Resistance to steel failure by exceeding the bending strength of the channel 	See Annex B5 and C2
- Max. installation torque	See Annex B5
 Resistance to pull-out failure of the anchor and to concrete cone failure 	See Annex C3 and C4
 Min. edge distance, spacing and member thickness 	See Annex B3
 Characteristic edge distance and spacing to avoid splitting of concrete under load 	See Annex C3 and C4
- Resistance to blow-out failure – bearing area of anchor head	See Annex A4

European Technical Assessment ETA-16/0929

Page 4 of 31 | 21 December 2020

English translation prepared by DIBt

Characteristic resistance under shear load (static and quasi-static load)	
- Resistance to steel failure of channel bolt	See Annex C9 und C10
Resistance to steel failure of channel lips, connection and anchor (shear load perpendicular to longitudinal axis of channel)	See Annex C5 und C6
Resistance to steel failure of channel lips, anchor and connection (shear load in direction of longitudinal axis of channel)	See Annex C5 und C6
- Resistance to concrete failure	See Annex C7
Characteristic resistance under combined tension and shear load (static and quasi-static load)	See Annex C8
Characteristic resistances under cyclic fatigue tension load	See Annex C12 to C13
Displacements (static and quasi-static load)	See Annex C5 and C7 to C8
Durability	See Annex B1

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Characteristic resistance to fire	See Annex C11

Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

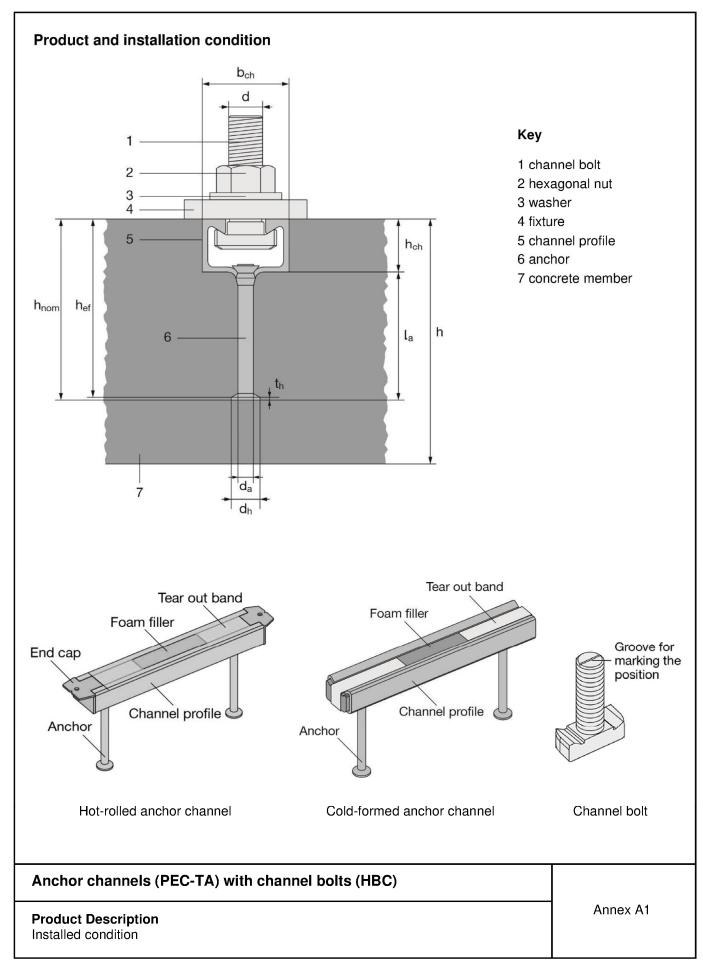
In accordance with EAD No. 330008-03-0601, the applicable European legal act is: [2000/273/EC].

The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

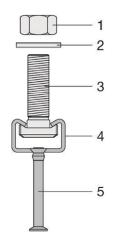
Issued in Berlin on 21 December 2020 on Deutsches Institut für Bautechnik

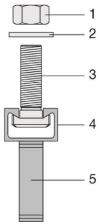

Dipl.-Ing. Beatrix Wittstock

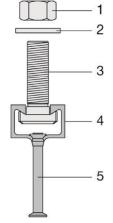
Head of Section

beglaubigt:

Müller






Anchor channel types

Cold-formed anchor channel

Hot-rolled anchor channel

Key

- 1 hexagonal nut
- 2 washer
- 3 channel bolt
- 4 channel profile
- 5 anchor

Round anchor

I-anchor

Marking of the anchor channels:

PEC-TA(-I) XZ (P)

PEC-TA 40/22F

PEC-TA = Identifying mark of the

manufacturer

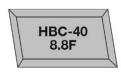
P = Additional marking for premium line

Additional marking for I-anchors (no marking in the case of round anchors)

X = Size of the channel

Z = Corrosion class / Material F = Hot-dip galvanized A4 = Stainless steel (e.g. PEC-TA 40/22 F)

Round anchor


40/22 = Anchor channel size 40/22

F = Hot-dip galvanized

Marking of the channel bolt:

HBC-X(-N) YZ

Χ

HBC = Identifying mark of

the manufacturer = Channel bolt

N = Additional marking for notching bolt

Y = Steel grade (4.6, 8.8, 70)
Z = Corrosion class / Material
F = Hot-dip galvanized

F = Hot-dip galvanized R = Stainless steel (e.g. HBC-40/22 8.8F)

= Channel bolt in combination with

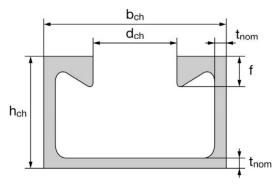
PEC-TA 40/22F

8.8 = Steel grade

F = Hot-dip galvanized

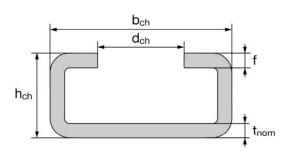
Anchor channels (PEC-TA) with channel bolts (HBC)

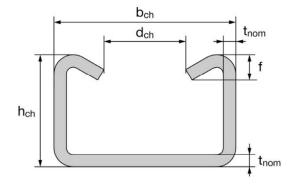
Product Description


Anchor channel types and marking

Annex A2

Z109244.20


Channel profiles



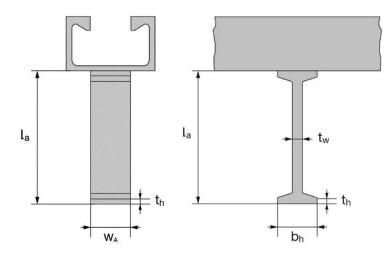
PEC-TA 40/22 (P), PEC-TA 50/30 (P), PEC-TA 52/34

Table 1: Dimensions of hot-rolled channel profile

Anchor channel	b _{ch}	h _{ch}	t _{nom}	d _{ch}	f	l _y		
Anchor channel		[mm]						
PEC-TA 40/22 (P)	40,1	23,0	2,7	18,0	6,0	21504		
PEC-TA 50/30 (P)	49,6	30,0	3,2	22,5	8,1	57781		
PEC-TA 52/34	52,5	34,0	4,0	22,5	11,5	97606		

PEC-TA 28/15, PEC-TA 38/17

PEC-TA 40/25, PEC-TA 49/30, PEC-TA 54/33


Table 2: Dimensions of cold-formed channel profile

Anchor	b _{ch}	h _{ch}	t _{nom}	t _{nom} d _{ch}		l _y
channel			[mm ⁴]			
PEC-TA 28/15	28,0	15,5	2,3	12,0	2,3	4277
PEC-TA 38/17	38,0	17,3	3,0	18,0	3,0	8224
PEC-TA 40/25	40,0	25,0	2,75	18,0	5,6	20122
PEC-TA 49/30	50,0	30,0	3,25	22,0	7,4	43105
PEC-TA 54/33	53,5	33,0	5,0	21,5	8,0	74706

Anchor channels (PEC-TA) with channel bolts (HBC)	
Product Description Channel profiles (PEC-TA)	Annex A3

Anchors

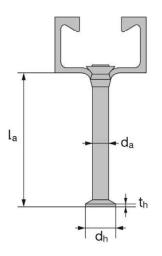
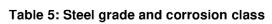


Table 3: Dimensions of anchor (welded I-anchor or round anchor)

	I-anchor						Ro	und anc	hor		
Anchor channel	min la	tw	bh	th	WA	Ah	min la	da	dh	th	Ah
Oname		[mm] [mm²]					[m	im]		[mm²]	
PEC-TA 28/15			1)			31,0	6,0	12,0	1,3	85
PEC-TA 38/17		1)				60,8					
PEC-TA 40/25			1)			56,0	8,0	16,0	2,0	151
PEC-TA 40/22	62,0	5,0	20,0	5,0	20,0	300	58,0				
PEC-TA 40/22 P	125,0	6,0	25,0	5,0	20,0	380	70,0	10,0	21,5	2,2	285
PEC-TA 49/30		1)					66.0	10.0	20.0	2.0	236
PEC-TA 50/30	69,0	5,0	20,0	5,0	25,0	375	66,0	10,0	20,0	2,2	230
PEC-TA 50/30 P	125,0	6,0	25,0	5,0	25,0	475	78,0	11,0	26,0	2,5	436
PEC-TA 54/33			1)				124,5		2,5	369	
PEC-TA 52/34	125,0	6,0	25,0	5,0	40,0	760	123,5	11,0	24,3	2,5	309

¹⁾ Product not available


Anchor channels (PEC-TA) with channel bolts (HBC)	
Product Description Anchors	Annex A4

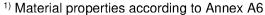
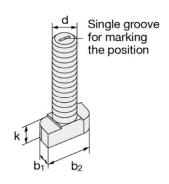
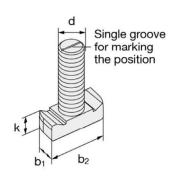
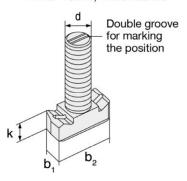

Channel bolts

Table 4: Dimensions of channel bolt


		Dimensions				
Appropriate anchor channel	Channel bolt	b ₁	b ₂	k	d	
			[m	ım]		
	HBC-28/15	10,1		5,0	8	
PEC-TA 28/15		10,1	22,2	5,0	10	
		11,0		6,0	12	
PEC-TA 38/17		13,0		6,0	10	
	HBC-38/17	13,0	30,5	7,0	12	
		16,0		7,0	16	
	HBC-40/22	14,0	33,0	10,5	10	
PEC-TA 40/22 (P) PEC-TA 40/25				11,5	12	
		17,0		11,5	16	
PEC-TA 40/22 P	HBC-40/22-N	17,0	33,0	11,5	16	
PEC-TA 49/30		17,0		14,5	12	
PEC-TA 50/30 (P) PEC-TA 52/34 PEC-TA 54/33	HBC-50/30	17,0	42,0	15,5	16	
		21,0		10,0	20	
PEC-TA 50/30 P	HBC-50/30-N	21,0	42,0	15,5	16	
PEC-TA 52/34	1100-30/30-11	21,0	42,0	10,0	20	


Channel Bolt	Carbo	n steel 1)	Stainles	s steel 1)
Steel grade	4.6 8.8		A4-50	A4-70
f _{uk} [N/mm²]	400	800 / 830 2)	500	700
f _{yk} [N/mm²]	240	640 / 660 ²⁾	210	450
Corrosion class	,	3) = 4)	R	5)


²⁾ Material properties according to EN ISO 898-1: 2013

HBC-28/15, HBC-38/17

HBC-40/22, HBC-50/30

HBC-40/22-N, HBC-50/30-N

Anchor channels (PEC-TA) with channel bolts (HBC)

Product Description

Channel bolts (HBC)

Annex A5

³⁾ Electroplated

⁴⁾ Hot-dip galvanized

⁵⁾ Stainless steel

Table 6: Materials

		Stainless steel		
Component	Mechanical properties		Mechanical properties	
1	2a	2b	2c	3
Channel Profile	1.0038, 1.0044, 1.0045 according to EN 10025: 2005 1.0976, 1.0979 according to EN 10149: 2013	Hot dip galvanized ≥ 50 μm according to EN ISO 10684: 2004/AC: 2009		1.4362, 1.4401 1.4404, 1.4571, 1.4578 according to EN 10088: 2005
Anchor	1.0038, 1.0213, 1.0214 according to EN 10025: 2005 1.5523, 1.5535 according to		Hot dip galvanized ≥ 50 μm according to EN ISO 10684: 2004/AC: 2009	1.4362, 1.4401 1.4404, 1.4571, 1.4578 according to EN 10088: 2005
Channel bolt	Steel grade 4.6 and 8.8 according to EN ISO 898-1: 2013	Electroplated according to EN ISO 4042: 1999	Hot dip galvanized ≥ 50 μm according to EN ISO 10684: 2004/ AC: 2009	Grade 50 or 70 according to EN ISO 3506: 2009
Plain washer ¹⁾ according to ISO 7089: 2000 and ISO 7093-1: 2000	ording to 9 7089: 2000 Hardness class A ≥ 200 HV		Hot dip galvanized ≥ 50 μm according to EN ISO 10684: 2004/ AC: 2009	1.4401, 1.4404 1.4571, 1.4578 according to EN 10088: 2005
Hexagonal nut according to ISO 4032: 2012 or DIN 934: 1987-10 ²⁾	cording to O 4032: 2012 or Cording to According to According to		Hot dip galvanized ≥ 50 μm according to EN ISO 10684: 2004/ AC: 2009	Property class 50, 70 or 80 according to EN ISO 3506: 2009

¹⁾ In scope of delivery only for notched bolts

Anchor channels (PEC-TA) with channel bolts (HBC)	
Product Description Materials	Annex A6

²⁾ Hexagonal nuts according to DIN 934: 1987-10 for channel bolts made from carbon steel (4.6) and stainless steel

³⁾ Anchors made of carbon steel according column 2a may also be used if they are welded and their concrete cover is more than 50mm and the tempering colors are removed

Specifications of intended use

Anchor channels and channel bolts subject to:

- Static and quasi-static loads in tension, shear perpendicular to the longitudinal axis of the channel and shear in the direction of the longitudinal axis.
- Fire exposure: only for concrete class C20/25 to C50/60.
- Fatigue cycling tension loads.

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206-1: 2000.
- Strength classes C12/15 to C90/105 according to EN 206-1: 2000.
- Cracked or uncracked concrete.

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (anchor channels and channel bolts according to Annex A6, Table 6, column 2 and 3).
- Structures subject to internal conditions with usual humidity (e.g. kitchen, bath and laundry in residential buildings, exceptional permanent damp conditions and application under water) (anchor channels and channel bolts according to Annex A6, Table 6, column 2c and 3).
- According to EN 1993-1-4: 2006 + A2: 2015 relating to corrosion resistance class CRC III (anchor channels, channel bolts according to Annex A6, Table 6, column 3)

Design:

- Anchor channels are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor channel and channel bolts are indicated on the design drawings (e.g. position of the anchor channel relative to the reinforcement or to supports).
- For static and quasi-static loading as well as fire exposure the anchor channels are designed in accordance with EOTA TR 047 "Calculation Method for the Performance of Anchor Channels", March 2018 or EN 1992-4: 2018.
- For fatigue loading the anchor channels are designed in accordance with EOTA TR 050 "Calculation Method for the Performance of Anchor Channels under Fatigue Loading", November 2015.
- The characteristic resistances are calculated with the minimum effective embedment depth.

Anchor channels (PEC-TA) with channel bolts (HBC)	
Intended Use Specifications	Annex B1

7109244 20 8 06 01-299/20

Installation:

- The installation of anchor channels is carried out by appropriately qualified personnel under the supervision of the person responsible for the technical matters on site.
- Use of the anchor channels only as supplied by the manufacturer without any manipulations. repositioning or exchanging of channel components.
- Cutting of anchor channels is allowed only if pieces according to Annex B3, Table 7 and Table 8 are generated including end spacing and minimum channel length and in case of hot-dip galvanised anchor channels only to be used in dry internal conditions.
- Installation in accordance with the manufacturer's specifications given in Annexes B6, B7 and B8
- The anchor channels are fixed on the formwork, reinforcement or auxiliary construction such that no movement of the channels will occur during the time of laying the reinforcement and of placing and compacting the concrete.
- The concrete around the head of the anchors are properly compacted. The channels are protected from penetration of concrete into the internal space of the channels.
- Washer may be chosen according to Annex A6 and provided separately by the user.
- Orientating the channel bolt (groove according to Annex B7 and Annex B8) rectangular to the channel
- The required installation torques given in Annex B5 must be applied and must not be exceeded.

	Anchor channels (PEC-TA) with channel bolts (HBC)	
	Intended Use Specifications	Annex B2
09	9244.20	8.06.01-299/20

Table 7: Installation parameters for hot-rolled anchor channel

Anchor channel		PEC-TA 40/22	PEC-TA 40/22 P	PEC-TA 50/30	PEC-TA 50/30 P	PEC-TA 52/34			
Minimum effective embedment depth	h _{ef,min}		79	91	94	106	155		
Minimum spacing	Smin		100	50	100	50 ¹⁾	100		
Maximum spacing	Smax			250					
End spacing	х] [mm]		25	2)		35 ³⁾		
Minimum channel length	I _{min}		150	100	150	100	170 ⁴⁾		
Minimum edge distance	Cmin		50 75						
Minimum thickness of concrete member	h _{min}		100	100	105	120	165		

 $^{^{1)}}$ s_{min} = 100 mm when used in combination with notched bolts

Table 8: Installation parameters for cold-formed anchor channel

Anchor channel			PEC-TA 28/15	PEC-TA 38/17	PEC-TA 40/25	PEC-TA 49/30	PEC-TA 54/33	
Minimum effective embedment depth	h _{ef,min}		45	76	79	94	155	
Minimum spacing	Smin		50		100			
Maximum spacing	Smax		20	00	250			
End spacing	х	[mm]	25 ¹⁾					
Minimum channel length	I _{min}		100	100 150				
Minimum edge distance	Cmin		40	5	0	75	100	
Minimum thickness of concrete member	h _{min}		70	100		120	180	

¹⁾ The end spacing may be increased from 25 mm to 35 mm

Anchor channels (PEC-TA) with channel bolts (HBC)

Intended Use
Installation parameters for anchor channels (PEC-TA)

Annex B3

²⁾ The end spacing may be increased from 25 mm to 35 mm

 $^{^{3)}}$ x = 25 mm for welded I-anchors

 $^{^{4)}}$ $I_{min} = 150$ mm for welded I-anchors

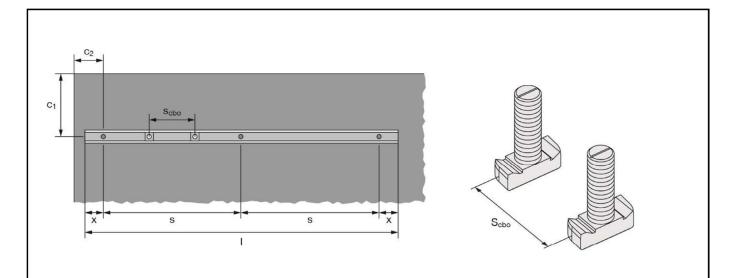


Table 9: Minimum spacing for channel bolts

Channel bolt			М8	M10	M12	M16	M20
Minimum spacing between channel bolts	Scbo,min	[mm]	40	50	60	80	100

 $s_{cbo} = spacing between channel bolts$

Anchor channels (PEC-TA) with channel bolts (HBC)	
Intended Use Installation parameters for anchor channels (PEC-TA)	Annex B4

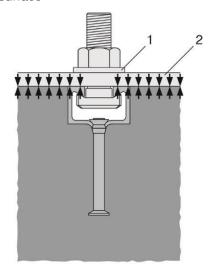


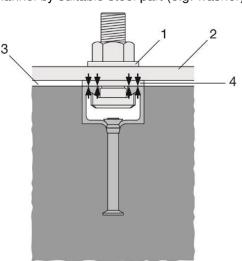
Table 10: Required installation torque Tinst

		T _{inst} ¹⁾ [Nm]							
Channe	el bolt	General: T _{inst,g}	Steel - steel contact: T _{inst,s}						
		4.6, 8.8, A4-50, A4-70	4.6	8.8	A4-50	A4-70			
	M8	7		20	7	15			
HBC-28/15	M10	10	2)	40		30			
	M12	13		60		50			
	M10	15	13	2)	2)	22			
HBC-38/17	M12	25	2)	45		50			
	M16	40	-,	100		90			
	M10	15	13	2)		22			
HBC-40/22	M12	25		45		50			
	M16	30		100	2)	90			
HBC-40/22-N	M16	160	<u> </u>	160		2)			
	M12	25	2)	45		50			
HBC-50/30	M16	55] -/	100		130			
	M20	55		360		250			
LIDO 50/20 N	M16	185		185		2)			
HBC-50/30-N	M20	320		320		۷,			

¹⁾ Tinst must not be exceeded

<u>General:</u> The fixture is in contact with the channel profile and the concrete surface

Key


1 washer

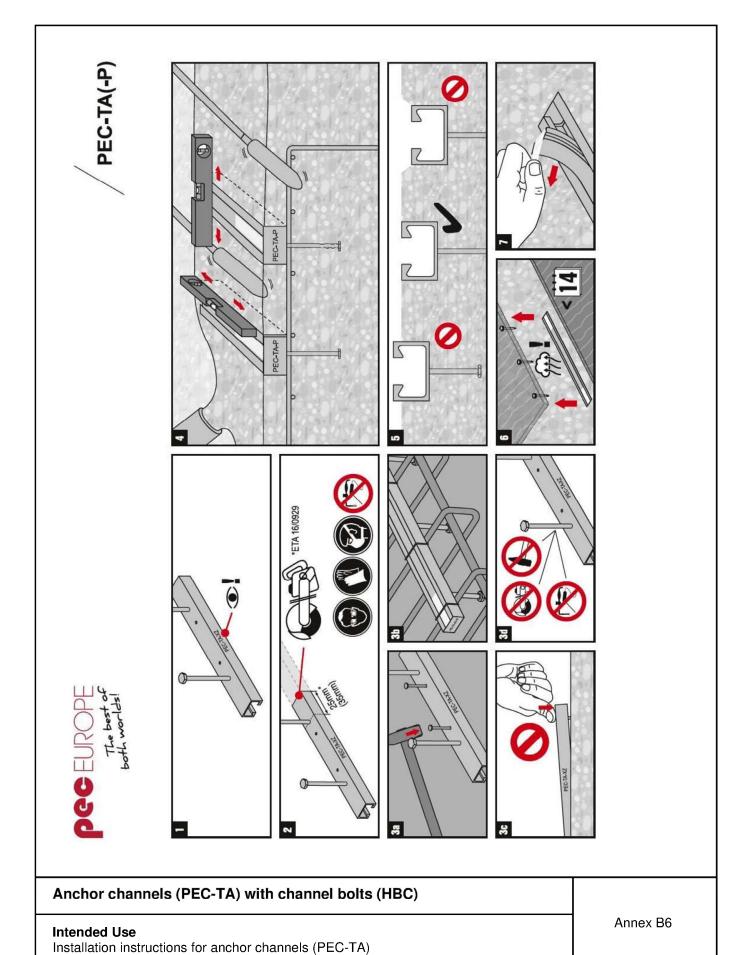
2 fixture

3 gap

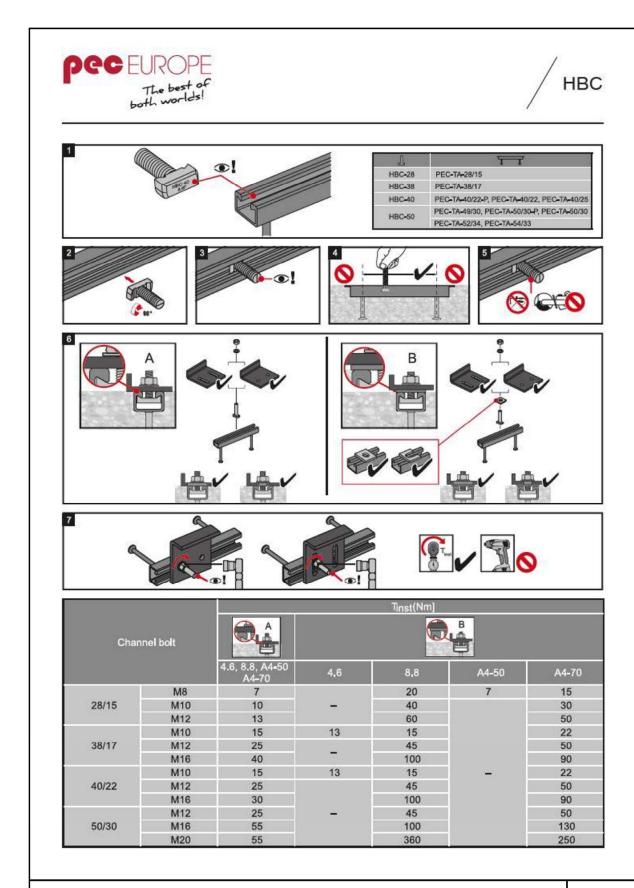
4 suitable steel part

<u>Steel-steel contact:</u> Fixture is not in contact with the concrete surface. The fixture is fastened to the anchor channel by suitable steel part (e.g. washer)

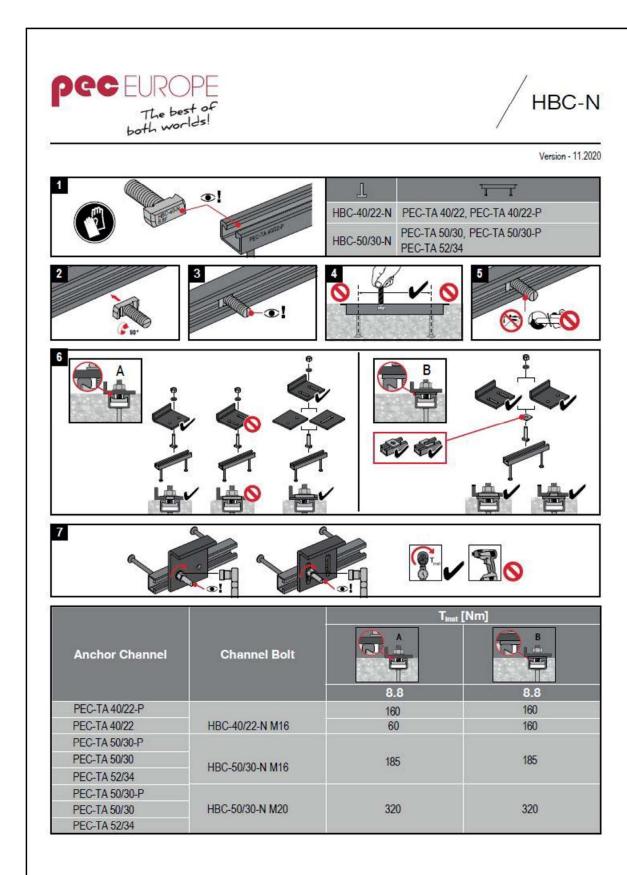
Anchor channels (PEC-TA) with channel bolts (HBC)


Intended Use

Installation parameters for channel bolts (HBC)


Annex B5

²⁾ Product not available


Anchor channels (PEC-TA) with channel bolts (HBC)

Intended Use

Installation instructions for channel bolts (HBC)

Annex B7

Intended Use

Installation instructions for channel bolts (HBC)

Annex B8

Table 11: Characteristic resistances under tension load – steel failure of hot-rolled anchor channels

Anchor channel			PEC-TA 40/22	PEC-TA 40/22 P	PEC- TA50/30	PEC-TA 50/30 P	PEC-TA 52/34				
Steel failure: Anchor	Steel failure: Anchor										
Characteristic resistance	N _{Rk,s,a}	[kN]	20,0	40,0	31,0	57,0	55,0				
Partial factor	γMs ¹⁾	[-]			1,8						
Steel failure: Connection between anchor and channel											
Characteristic resistance	N _{Rk,s,c}	[kN]	20,0	39,6	31,0	50,6	55				
Partial factor	γMs,ca ¹⁾	[-]			1,8						
Steel failure: Local flexure	e of cha	ınnel lip	os								
Characteristic spacing of the channel bolts for N _{Rk,s,l}	Si,N	[mm]	79	79	98	98	105				
Characteristic resistance	N ⁰ Rk,s,l	[kN]	47,9	47,9	50,5	50,5	65,0				
Partial factor	γMs,I ¹⁾	[-]		•	1,8	•	•				

¹⁾ In absence of other national regulations

Table 12: Characteristic resistances under tension load – steel failure of cold-formed anchor channels

Anchor channel		PEC-TA 28/15	PEC-TA 38/17	PEC-TA 40/25	PEC-TA 49/30	PEC-TA 54/33			
Steel failure: Anchor									
Characteristic resistance	N _{Rk,s,a}	[kN]	9,0	18,0	20,0	31,0	55,0		
Partial factor	γMs ¹⁾	[-]			1,8				
Steel failure: Connection between anchor and channel									
Characteristic resistance	N _{Rk,s,c}	[kN]	9,0	18,0	20,0	31,0	55,0		
Partial factor	γMs,ca ¹⁾	[-]			1,8				
Steel failure: Local flexur	e of cha	nnel lij	os						
Characteristic spacing of the channel bolts for N _{Rk,s,I}	SI,N	[mm]	56	76	80	100	107		
Characteristic resistance	N ⁰ Rk,s,l	[kN]	9,0	18,0	20,0	31,0	55,0		
Partial factor	γ _{Ms,I} 1)	[-]		•	1,8	•	•		

¹⁾ In absence of other national regulations

Anchor channels (PEC-TA) with channel bolts (HBC)	
Performance Data Characteristic resistances of anchor channels under tension load	Annex C1

Table 13: Characteristic flexural resistance of hot-rolled anchor channels under tension load

Anchor channel			PEC-TA 40/22	PEC-TA-P 40/22	PEC-TA 50/30	PEC-TA-P 50/30	PEC-TA 52/34
Steel failure: Flexure of cha	nnel						
Characteristic flexural resistance of channel	M _{Rk,s,flex}	[Nm]	1013	1704	2084	3448	3435
Partial factor	γMs,flex ¹⁾	[-]			1,15		

¹⁾ In absence of other national regulations

Table 14: Characteristic flexural resistance of cold-formed anchor channels under tension load

Anchor channel	PEC-TA 28/15	PEC-TA 38/17	PEC-TA 40/25	PEC-TA 49/30	PEC-TA 54/33			
Steel failure: Flex								
Characteristic flexural	carbon steel	M _{Rk,s,flex}	[Nm]	316	538	979	1669	2929
resistance of channel	e of stainless steel		נויואון	310	527	373	1702	2832
Partial factor γ _{Ms,flex} 1) [-]			1,15					

¹⁾ In absence of other national regulations

Anchor channels (PEC-TA) with channel bolts (HBC)	
Performance Data Characteristic resistances of anchor channels under tension load	Annex C2

Table 15: Characteristic resistances under tension load – concrete failure of hot-rolled anchor channels

Anchor channel					C-TA /22		C-TA 22 P		C-TA /30		-TA 30 P		-TA /34
Type of anchor				ı	R	I	R	I	R	I	R	I	R
Concrete	failure: Pul	ll-out						•					
Characte resistance concrete	e in cracked			27,0	13,6	34,2	25,6	33,8	21,2	42,8	39,2	68,4	33,2
Characte resistance uncracke C12/15		N _{Rk,p}	[kN]	37,8	19,0	47,9	35,8	47,3	29,7	59,9	54,9	95,8	46,5
		C16/20						1,	33				
		C20/25		1,67									
		C25/30		2,08									
Factor for	actor for N _{Rk,p}			2,50									
N.I.		C35/45	Ψc	2,92									
Nrk,p =	C40/50	[-]	3,33										
N _{Rk,p} (C12/1	₅₎ · ψ _c	C45/55		3,75									
		C50/60		4,17									
		C55/67		4,58									
		≥ C60/75			5,00								
Partial fac	ctor	$\gamma_{Mp} = \gamma_{Mc}^{2)}$	[-]	1,5									
Concrete	e failure: Co	ncrete con	•										
Product	cracked concrete	k _{cr,N}	[-]	7	,9	8	,0	8	,1	8	,2	8	,7
factor k ₁	uncracked concrete	K _{ucr,N}	[-]	11	,2	1	1,5	1	1,6	11	,7	12	2,4
Partial fac	ctor	γ Mc $^{2)}$	[-]					1	,5				
Concrete	failure: Sp	litting											
Characte distance	ristic edge	C _{cr,sp}	[mm]	23	37	2	73	2	82	3.	18	46	65
Characte spacing	ristic	S _{cr,sp}	[mm]	47	74	5-	46	5	64	60	36	93	30
Partial fac	ctor	$\gamma_{\rm Msp} = \gamma_{\rm Mc}^{\ 2)}$	[-]	1,5									

¹⁾ Product not available

Anchor channels (PEC-TA) with channel bolts (HBC)	
Performance Data Characteristic resistances of anchor channels under tension load	Annex C3

²⁾ In absence of other national regulations

Table 16: Characteristic resistances under tension load – concrete failure of cold-formed anchor channels

Anchor cl	nannel			PEC-TA 28/15	PEC-TA 38/17	PEC-TA 40/25	PEC-TA 49/30	PEC-TA 54/33			
Type of a	nchor			R	R	R	R	R			
Concrete	failure: Pul	l-out									
Characteristic resistance in cracked concrete C12/15 Characteristic resistance in uncracked concrete C12/15				7,6	13,6	13,6	21,2	33,2			
		$N_{Rk,p}$	[kN]	10,7	19,0	19,0	29,7	46,5			
		C16/20				1,33					
		C20/25				1,67					
Factor for N _{Rk,p}		C25/30				2,08					
		C30/37	1	2,50							
	AF	C35/45] ,	2,92							
N _{Rk,p} =	C40/50	ψc [-]			3,33						
N Rk,p (C12/15) · Ψc	C45/55			3,75						
		C50/60		4,17							
		C55/67		4,58							
		≥ C60/75		5,00							
Partial fac	tor	$\gamma_{Mp} = \gamma_{Mc}^{1)}$	[-]	1,5							
Concrete	failure: Cor	ncrete con	е								
Product	cracked concrete	k _{cr,N}	[-]	7,2	7,8	7,9	8,1	8,7			
factor k₁	uncracked concrete	k _{ucr,N}	[-]	10,3	11,2	11,2	11,6	12,4			
Partial fac	tor	γMc ¹⁾	[-]			1,5					
Concrete	failure: Spl	itting									
Characteristic edge distance		Ccr,sp	[mm]	135	228	237	282	465			
Characteri spacing	stic	Scr,sp	[mm]	270	456	474	564	930			
Partial fac	tor	$\gamma_{Msp} = \gamma_{Mc}^{1)}$	[-]			1,5					

¹⁾ In absence of other national regulations

Anchor channels (PEC-TA) with channel bolts (HBC)	
Performance Data Characteristic resistances of anchor channels under tension load	Annex C4

Table 17: Displacements of hot-rolled anchor channels under tension load

Anchor channel			PEC-TA 40/22	PEC-TA 40/22 P	PEC-TA 50/30	PEC-TA 50/30 P	PEC-TA 52/34
Tension load	Ν	[kN]	13,9	15,3	14,3	25,8	25,8
Short-term displacement 1)	δ_{N0}	[mm]	2,3	1,1	2,2	1,4	1,4
Long-term displacement 1)	δ _{N∞}	[mm]	4,6	2,2	4,4	2,8	2,8

¹⁾ Displacements in midspan of the anchor channel, including slip of channel bolt, deformation of channel lips, bending of the channel and slip of the anchor channel in concrete

Table 18: Displacements of cold-formed anchor channels under tension load

Anchor channel			PEC-TA 28/15	PEC-TA 38/17	PEC-TA 40/25	PEC-TA 49/30	PEC-TA 54/33
Tension load	N	[kN]	3,6	7,1	7,9	12,3	21,8
Short-term displacement 1)	δ_{N0}	[mm]	0,6	1,3	1,4	1,4	1,6
Long-term displacement 1)	δ _{N∞}	[mm]	1,2	2,6	2,8	2,8	3,2

¹⁾ Displacements in midspan of the anchor channel, including slip of channel bolt, deformation of channel lips, bending of the channel and slip of the anchor channel in concrete

Table 19: Characteristic resistances under shear load – steel failure of hot-rolled anchor channel

Anchor channel			PEC-TA 40/22	PEC-TA 40/22 P	PEC-TA 50/30	PEC-TA 50/30 P	PEC-TA 52/34	
Steel failure: Anchor								
Characteristic resistance	V _{Rk,s,a,y}	[kN]	26,0	58,1	40,3	100,0	121,5	
Characteristic resistance	$V_{Rk,s,a,x}$	[kN]	2)	24,0	2)	34,2	33,1	
Partial factor	γMs ¹⁾	[-]	1,5					
Steel failure: Connection between anchor and channel								
Characteristic resistance	V _{Rk,s,c,y}	[kN]	26,0	58,1	40,3	100,0	121,5	
Characteristic resistance	$V_{Rk,s,c,x}$	[kN]	2)	23,8	2)	30,4	28,1	
Partial factor	γ _{Ms,ca} 1)	[-]			1,8			
Steel failure: Local fle of the ch		chann	el lips under	shear load p	perpendicula	r to the longit	udinal axis	
Characteristic spacing of channel bolts for V _{Rk,s,l}	SI,V	[mm]	80	80	99	99	105	
Characteristic resistance	V ⁰ Rk,s,l,y	[kN]	55,0	55,0	91,7	91,7	71,5	
Partial factor	γMs,I ¹⁾	[-]		·	1,8	·	·	

¹⁾ In absence of other national regulations

²⁾ No performance assessed

Anchor channels (PEC-TA) with channel bolts (HBC)	
Performance Data Displacements under tension load. Characteristic resistances of anchor channels under shear load	Annex C5

Table 20: Characteristic resistances under shear load in direction of the longitudinal axis of the channel – steel failure of hot-rolled anchor channel

Anchor channel		PEC-TA 40/22	PEC-TA 40/22 P	PEC-TA 50/30	PEC-TA 50/30 P	PEC-TA 52/34		
Steel failure: Connection between channel lips and channel bolt								
	HBC-40/22-N M16 8.8F			12,5		1)		
Characteristic resistance	Characteristic resistance V _{Rk,s,l,x} HBC-5 M16 HBC-5	HBC-50/30-N M16 8.8F	2)	3)	2)	8,3	8,3	
		HBC-50/30-N M20 8.8F	- 2)	2)	2)	8,3	8,3	
Installation factor	γinst	[-]		1,4		1	,0	

¹⁾ Product not available

Table 21: Characteristic resistances under shear load – steel failure of cold-formed anchor channel

Anchor channel			PEC-TA 28/15	PEC-TA 38/17	PEC-TA 40/25	PEC-TA 49/30	PEC-TA 54/33
Steel failure: Anchor							
Characteristic resistance	V _{Rk,s,a,y}	[kN]	9,0	18,0	20,0	31,0	55,0
Partial factor	γMs ¹⁾	[-]			1,5		
Steel failure: Connection between anchor and channel							
Characteristic resistance	V _{Rk,s,c,y}	[kN]	9,0	18,0	20,0	31,0	55,0
Partial factor	γMs,ca ¹⁾	[-]			1,8		
Steel failure: Local flexu of the char		nnel li	ps under sh	ear load per	pendicular to	the longitu	ıdinal axis
Characteristic spacing of channel bolts for V _{Rk,s,l}	Sı,v	[mm]	56	76	80	100	107
Characteristic resistance	V ⁰ Rk,s,l,y	[kN]	9,0	18,0	20,0	31,0	55,0
Partial factor	γMs,I ¹⁾	[-]			1,8		

¹⁾ In absence of other national regulations

Anchor channels (PEC-TA) with channel bolts (HBC)	
Performance Data Characteristic resistances of anchor channels under shear load	Annex C6

²⁾ No performance assessed

Table 22: Characteristic resistances under shear load – concrete failure of hot-rolled anchor channel

Anchor channel				PEC-TA 40/22	PEC-TA-P 40/22	PEC-TA 50/30	PEC-TA-P 50/30	PEC-TA 52/34	
Concrete	failure: Pry out	t							
Product fa	actor	k ₈	[-]			2,0			
Partial fac	ctor	γMc ¹⁾	[-]	1,5					
Concrete	failure: Concre	ete edge							
Product	cracked concrete	k _{cr,V}	[-]			7,5			
factor k ₁₂	uncracked concrete	k _{ucr,V}	[-]	-] 10,5					
Partial fac	ctor	γMc ¹⁾	[-]	1,5					

¹⁾ In absence of other national regulations

Table 23: Characteristic resistances under shear load – concrete failure of cold-formed anchor channel

Anchor ch	nannel			PEC-TA 28/15	PEC-TA 38/17	PEC-TA 40/25	PEC-TA 49/30	PEC-TA 54/33	
Concrete	failure: Pry out								
Product fa	ctor	k ₈	[-]	1,0		2	,0		
Partial fact	or	$\gamma_{Mc}^{1)}$ [-] 1,5					5		
Concrete	failure: Concret	e edge	•						
Product	cracked kery [-1			6,9	6,9 7,5				
factor k ₁₂	uncracked concrete	k _{ucr,V} [-] 9,6 9,6 10,5							
Partial fact	or	γMc ¹⁾	[-]	1,5					

¹⁾ In absence of other national regulations

Table 24: Displacements under shear load of hot-rolled anchor channel

Anchor channel			PEC-TA 40/22	PEC-TA 40/22 P	PEC-TA 50/30	PEC-TA 50/30 P	PEC-TA 52/34
Shear load	Vy	[kN]	10,3	29,0	16,0	39,7	28,4
Short-term displacement 1)	$\delta_{V0,y}$	[mm]	2,1	2,0	2,6	2,7	3,7
Long-term displacement 1)	δ _V ∞, _y	[mm]	3,1	3,5	3,9	4,0	5,5
Shear load	Vx	[kN]	2)	5,2	2)	3,3	7,9
Short-term displacement 1)	δ _{V0,x}	[mm]	2)	0,1	2)	0,1	1,4
Long-term displacement 1)	δ _V ∞,χ	[mm]	2)	0,2	2)	0,2	2,0

¹⁾ Displacements in midspan of the anchor channel, including slip of channel bolt, deformation of channel lips and slip of the anchor channel in concrete

²⁾ No performance assessed

Anchor channels (PEC-TA) with channel bolts (HBC)	
Performance Data Characteristic resistances and displacements of anchor channels under shear load	Annex C7

Table 25: Displacements under shear load of cold-formed anchor channel

Anchor channel			PEC-TA 28/15	PEC-TA 38/17	PEC-TA 40/25	PEC-TA 49/30	PEC-TA 54/33
Shear load	Vy	[kN]	3,6	7,1	7,9	12,3	21,8
Short-term displacement 1)	δ _{V0,y}	[mm]	0,6	1,3	1,4	1,4	1,6
Long-term displacement 1)	δ _V ∞, _y	[mm]	0,9	2,0	2,1	2,1	2,4

¹⁾ Displacements in midspan of the anchor channel, including slip of channel bolt, deformation of channel lips and slip of the anchor channel in concrete

Table 26: Characteristic resistances under combined tension and shear load of hot-rolled anchor channel

Anchor channel	nor channel			PEC-TA-P 40/22	PEC-TA 50/30	PEC-TA-P 50/30	PEC-TA 52/34	
Steel failure: Local flexure of	: Local flexure of channel lips and flexure of channel							
Product factor	[-]	Values according to EN 1992-4:2018, Section 7.4.3.1						
Steel failure: Anchor and cor	nectio	n betwee	n anchor ar	nd channel				
Product factor	k ₁₄	[-]	Values	according to	EN 1992-4:2	2018, Section	n 7.4.3.1	

Table 27: Characteristic resistances under combined tension and shear load of cold-formed anchor channel

Anchor channel	PEC-TA 28/15	PEC-TA 38/17	PEC-TA 40/25	PEC-TA 49/30	PEC-TA 54/33		
Steel failure: Local flexure o	cal flexure of channel lips and flexure of channel						
Product factor	Values according to EN 1992-4:2018, Section 7.4.3.1						
Steel failure: Anchor and co	nnectio	n betwee	n anchor an	d channel			
Product factor	k ₁₄	[-]	Values according to EN 1992-4:2018, Section 7.4.3.1				

Anchor channels (PEC-TA) with channel bolts (HBC)

Performance Data
Displacements under shear load
Characteristic resistances under combined tension and shear load

Table 28: Characteristic resistances under tension and shear load – steel failure of channel bolts

Channel bolt	M8	M10	M12	M16	M20					
Steel failure				•	•					
			LIDC 00/45	4.6			1)			
				8.8	22,4	35,4	44,3		1)	
			HBC-28/15	A4-50 ²⁾	17,2		1)			
				A4-70 ²⁾	25,6	38,9	51,3		1)	
				4.6		23,2		1)		
			HBC-38/17	8.8		1)	35,4	55,8	1)	
Ch avantaviatia vanistavan				A4-70 ²⁾		20,5	47,2	53,0] ''	
Characteristic resistance (tension load)	N _{Rk,s}	[kN]		4.6		23,2		1)		
(terision load)			HBC-40/22	8.8		1)	67,4	125,6	1)	
				A4-70 ²⁾	1)	20,5	59,0	91,0] ''	
			HBC-40/22-N	8.8		1)	125,6	1)	
				4.6				1)		
			HBC-50/30	8.8		1)	67,4	125,6	147,1	
				A4-70 ²⁾		''	59,0	109,9	121,2	
			HBC-50/30-N	8.8		1)	125,6	186,6	
			HBC-28/15	4.6		2,00				
Dorticl factor	3)	, ,	HBC-38/17	8.8		1,50				
Partial factor	γMs ³⁾	[-]	HBC-40/22	A4-50 ²⁾		2,86				
			HBC-50/30	A4-70 ²⁾		1,87				
				4.6			1)			
			HBC-28/15	8.8	14,6	23,2	33,7		1)	
				A4-50 ²⁾	11,0			1)		
				A4-70	15,4	24,4	35,4		1)	
				4.6		13,9		1)		
			HBC-38/17	8.8		1)	33,7	62,8	1)	
Characteristic resistance				A4-70 ²⁾		24,4	35,4	65,9] '	
(shear load)	$V_{Rk,s}$	[kN]		4.6		13,9		1)		
(Sircar load)			HBC-40/22	8.8		23,2	33,7	62,8	1)	
				A4-70 ²⁾	1)	24,4	35,4	65,9] '/	
			HBC-40/22-N	8.8		1	1)	62,8	1)	
				4.6				1)		
			HBC-50/30	8.8		1)	33,7	62,8	101,7	
				A4-70 ²⁾		''	35,4	65,9	102,9	
			HBC-50/30-N	8.8		1	1)	62,8	101,7	
			HBC-28/15	4.6	1,67					
Partial factor	3)	,	HBC-38/17	8.8		1,25				
ר מדוומו ומטנטו 	γMs ³⁾	[-]	HBC-40/22 A4-50 ²⁾ 2,38							
			HBC-50/30	A4-70			1,56			

¹⁾ Product not available

Anchor channels (PEC-TA) with channel bolts (HBC)	
Performance Data Characteristic resistance of channel bolts under tension and shear load	Annex C9

 ²⁾ Materials according to Table 6, Annex A6
 ³⁾ In absence of other national regulations

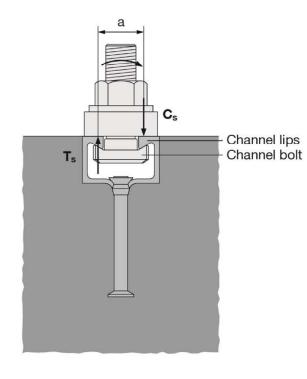


Table 29: Characteristic resistances under shear load with lever arm - steel failure of channel bolts

Channel bolt					M8	M10	M12	M16	M20	
Steel failure										
			HBC-28/15	4.6	4)	29,9 3)		4)		
Characteristic	NAO 5)	[Nm]	HBC-38/17	8.8	30,0	59,8	104,8	266,4	538,7	
flexural I resistance	M ⁰ Rk,s ⁵⁾		HBC-40/22(-N)	A4-50 ²⁾	18,7	4)				
			HBC-50/30(-N)	A4-70 ²⁾	26,2	52,3	91,7	233,1	454,4	
	1)	/Ms ¹⁾ [-]	HBC-28/15 HBC-38/17 HBC-40/22(-N)	4.6		1,67				
Dorticl footor				8.8		1,25				
Partial factor	γMs ' [/]			A4-50 ²⁾		2,38				
			HBC-50/30(-N)	A4-70 ²⁾			1,56			
		a [mm]	HBC-28/15	28/15	17,3	18,7	20,0	2	l)	
Internal lever			HBC-38/17	38/17		23,0	24,3	26,3	4)	
arm	ı a		HBC-40/22(-N)	40/22	4)	24,3	25,7	27,3] -*)	
			HBC-50/30(-N)	50/30		4)	29,9	31,7	33,9	

¹⁾ In absence of other national regulations

⁴⁾ Product not available

⁵⁾ The characteristic flexure resistance according to Table 29 is limited as follows:

 $M^0_{Rk,s} \le 0,5 \cdot N_{Rk,s,l} \cdot a$ ($N_{Rk,s,l}$ according to Table 11 and Table 12)

 $M^0_{Rk,s} \le 0,5 \cdot N_{Rk,s} \cdot a$ (N_{Rk,s} according to Table 29)

a = internal lever arm according to Table 29

 T_{s} = tension force acting on the channel lip

 C_s = compression force acting on the channel lip

Performance Data

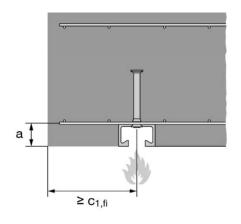
Characteristic flexural resistances of channel bolts under shear load with lever arm

Annex C10

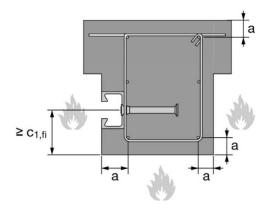
²⁾ Materials according to Table 6, Annex A6

³⁾ Not applicable for HBC-28/15 and HBC-50/30

Table 30: Characteristic resistance F_{Rd,s,fi} [kN] of anchor channels under fire exposure


Channel bolt		M10	M12	≥ M16				
Steel failure: Anchor,	ocal flexure	of channel li	р					
		R60			0,	,8		
	PEC-TA 28/15	R90			0,	,6	2)	
		R120		[kN]	0,	,5		
		R60			2	2)		
	PEC-TA 38/17	R90	20 N _{Rk,s,fi} 60 = V _{Rk,s,fi}		2)		1,3	
Characteristic		R120			2)		1,0	
resistance in cracked	PEC-TA 40/25 PEC-TA 40/22 (P)	R60			1,7		,5	
concrete C20/25		R90			1,2	2	,2	
		R120			0,9	1	,5	
	PEC-TA 49/30	R60			2)	3,8	3,9	
	PEC-TA 50/30 (P)	R90				2,5	2,9	
	PEC-TA 52/34	R120				1,9	2,4	
Partial factor	γMs,fi ¹⁾	[-]	1,0					

¹⁾ In absence of other national regulations


Table 31: Minimum axis distance of reinforcement

Anchor	chanı	nel		PEC-TA 28/15			PEC-TA 49/30	PEC-TA 50/30 (P)	PEC-TA 54/33	PEC-TA 52/34	
Min.	R60				35				50		
axis	R90	a	[mm]		45			50	50	50	50
distance	R120						5	5			

Fire exposure from one side only

Fire exposure from more than one side

Anchor channels (PEC-TA) with channel bolts (HBC)

Performance Data

Characteristic resistances of anchor channels and channel bolts under fire exposure

Annex C11

²⁾ No performance assessed

Table 32: Combination of anchor channels and channel bolts under fatigue tension load

Anch	or channel		Channel bolt					
Channel profile	Anchor type	Corrosion protection	Channel bolt	Diameter	Steel grade	Corrosion protection		
PEC-TA 40/22 P			HBC-40/22	M12				
PEC-1A 40/22 P			ПВС-40/22	M16				
DEC TA 50/00 D	_	_	1100 50/00	LIDO 50/00	M16		G	
PEC-TA 50/30 P	R	F	HBC-50/30	M20	8.8	F		
DEC TA 50/04			LIDO 50/20	M16				
PEC-TA 52/34			HBC-50/30	M20				

Table 33: Characteristic resistances under fatigue tension load – steel failure after n load cycles without static preload ($N_{Ed} = 0$) (Design method I according to EOTA TR 050)

Anchor channel		PEC-TA 40/22 P	PEC-TA 50/30 P	PEC-TA 52/34			
Steel failure	n	$\Delta N_{Rk,s,0,n}$ [kN]					
	≤ 10⁴	16,4	20,9	24,3			
	≤ 10 ⁵	7,7	9,0	12,5			
Characteristic resistance under fatigue tension load	≤ 10 ⁶	3,2	4,2	7,1			
after n load cycles without	≤ 2 · 10 ⁶	2,6	3,7	6,4			
static preload (N _{Ed} = 0)	≤ 5 · 10 ⁶	2,2	3,4	5,9			
(14Ed = 0)	≤ 108	2,0	3,3	5,7			
	> 108	1,8	3,2	5,5			

Anchor channels (PEC-TA) with channel bolts (HBC)	
Performance Data Characteristic resistances under fatigue tension load	Annex C12

Table 34: Reduction factor $\eta_{c,fat}$ of characteristic fatigue resistance - concrete failure after n load cycles without static preload ($N_{Ed}=0$) (Design method I according to EOTA TR 050)

Anchor channel	PEC-TA 40/22 P	PEC-TA 50/30 P	PEC-TA 52/34				
Pull-out and Concrete cone failure	η _{c,fat} [-]						
	≤ 10 ⁴		0,736				
Reduction factor after n load cycles without static preload (N _{Ed} = 0) for:	≤ 10 ⁵	0,665					
$\Delta N_{Rk,p,0,n} = \eta_{c,fat} \cdot N_{Rk,p}$	≤ 10 ⁶		0,600				
$\Delta N_{Rk,c,0,n} = \eta_{c,fat} \cdot N_{Rk,c}$	≤ 2 · 10 ⁶		0,582				
with N _{Rk,p} calculated according to Annex C3	≤ 5 · 10 ⁶		0,559				
and N _{Rk,c} calculated according to EOTA TR047, March 2018 or EN 1992-4: 2018	≤ 6 · 10 ⁷	0,500					
2017 111047, Waldin 2010 of EN 1992-4. 2010	> 6 · 10 ⁷		0,500				

Table 35: Characteristic resistances under fatigue tension load – steel failure with n $\rightarrow \infty$ load cycles without static preload (N_{Ed} = 0) (Design method II according to EOTA TR 050)

Anchor channel	PEC-TA 40/22 P	PEC-TA 50/30 P	PEC-TA 52/34		
Steel failure	ΔN _{Rk,s,0,∞} [kN]				
Characteristic fatigue limit resistance $(n \rightarrow \infty)$ without static preload $(N_{Ed} = 0)$	1,8	3,2	5,5		

Table 36: Reduction factor $\eta_{c,fat}$ of characteristic fatigue limit resistance - concrete failure with $n\to\infty$ load cycles without static preload (N_{Ed} = 0) (Design method II according to EOTA TR 050)

Anchor channel	PEC-TA 40/22 P	PEC-TA 50/30 P	PEC-TA 52/34
Pull-out and Concrete cone failure		$\eta_{\text{c,fat}}$ [-]	
Reduction factor for fatigue limit resistance $(n \rightarrow \infty)$ without static preload $(N_{Ed} = 0)$ for:			
$\begin{array}{l} \Delta N_{Rk,p,0,n} = \eta_{c,fat} \cdot N_{Rk,p} \\ \Delta N_{Rk,c,0,n} = \eta_{c,fat} \cdot N_{Rk,c} \end{array}$		0,5	
with N _{Rk,p} calculated according to Annex C3 and N _{Rk,c} calculated according to EOTA TR047, March 2018 or EN 1992-4: 2018			

Anchor channels (PEC-TA) with channel bolts (HBC)	
Performance Data Characteristic resistances under fatigue tension load	Annex C13